Introduction
Stress induced impairment of regional left ventricular function is a reliable indicator of transient myocardial ischemia [1, 13]. Therefore, the analysis of wall motion abnormalities by echocardiography in conjunction with a variety of different stress modalities has grown to a clinically established non-invasive test for the assessment of myocardial ischemia [2]. However, optimal echocardiographic image acquisition depends on the skill of the operator and the presence of an adequate acoustic window. Approximately 15% of patients admitted to stress-echo yield suboptimal or non-diagnostic images [3, 4, 5, 6]. Formerly these patients were referred to myocardial scintigraphy performed in single-photon emission computed tomography (SPECT) technique. High-dose dobutamine stress cardiac magnetic resonance imaging (CMR) emerged as an alternative high-resolution and noninvasive method for the detection of stress induced myocardial ischemia, which does not expose the patient to radiation and provides a diagnostic accuracy for the detection and localization of functional significant coronary artery disease (CAD) comparable to stress echocardiography and SPECT technique [6, 10, 11, 12, 14, 22, 23, 26].

Dobutamine stress cardiac MR imaging
Due to its high spatial resolution and good tissue contrast, CMR has been shown to be the most accurate imaging modality for determination of wall thickening and volume measurements [13, 14, 15]. Recent technical developments, providing stronger gradient systems with new ultrafast sequences and fast data reconstruction procedures providing “near real-time” imaging facilitate clinically feasible cardiac MRI stress testing. Cine CMR with retrospective ECG-gating displays myocardial contractility of the entire cardiac cycle and permits evaluation of global and regional function [17].

MR sequence
The image quality of gradient echo techniques, which offer a shorter acquisition time as spin-echo sequences, depends on flow effects and may decrease depending on impaired regional or global ventricular function. Steady-state free precession sequences (e.g. TrueFISP) provide much higher signal intensity and signal-to-noise ratio (SNR) [18]. They enable rapid data acquisition and a high contrast between blood and myocardium without flow artifacts. Because of the distinguished delineation of anatomic structures steady-state free precession sequences are ideally suited for evalua-
tion of wall motion and wall thickening. Parallel imaging techniques reduce imaging time even more, but there is a partial loss of SNR depending on the accelerating factor. Currently, steady state free precession sequences in combination with parallel image acquisition and retrospective gating are state of the art. New real-time imaging sequences with improved spatial and temporal resolution will lead to further improvement in cardiac MR imaging especially during stress testing [17].

Image acquisition

Primary rapid multi-slice localizing images are acquired to define the cardiac axes. By means of single-angulated tomograms intersecting the mitral valve and the cardiac apex on a transverse view double-angulated long-axis tomograms that also intersect the mitral valve plane and the apex are planned. Based upon these images contiguous true short-axis cine scans are acquired to cover the whole left ventricle. In addition, three long-axis tomograms – two chamber view, four chamber view and three chamber view – are acquired according to the equatorial short axis orientation. Scanning by breath-holding in end-expiration reduces breathing artifacts. True short-axis and long-axis cine images are obtained at each stress level.

Standard high-dose dobutamine protocol

As a primarily beta1-adrenergic catecholamine with positive inotropic and positive chronotropic effect, dobutamine increases the myocardial oxygen consumption. Coronary arteries with severe stenosis do not allow adequate increase of blood flow to compensate elevated myocardial oxygen consumption under stress conditions. Myocardial ischemia leads to impairment of regional myocardial function, depressed systolic contractility and loss of systolic wall thickening. ECG changes and clinical symptoms manifest later and inconsistently in the “cascade of ischemia” [13]. For stress testing dobutamine is infused intravenously during 3-minute stages at doses of 10, 20, 30 and 40 μg per kilogram of body weight per minute under continuously monitoring of heart rhythm, blood pressure and symptoms. If the submaximal stress level described by a target heart rate of ((220-age) × 0.85) is not reached, additional fractionated atropine doses of 0.25 mg every 60 seconds up to a maximal dose of 1.0 mg are administered intravenously. The same true short-axis and long-axis cine images are obtained at each stress level as acquired at rest (Figure 1). Immediately after acquisition images are displayed.
for observation of new wall motion abnormalities. If clinically relevant symptoms of arrhythmia or angina occurs or if the age predicted target heart rate or a systolic blood pressure over 240 mmHg or a diastolic blood pressure over 120 mmHg is reached, the dose of dobutamine must not increased further. An advantage of dobutamine is its rapid onset of action and short half-life of about 120 seconds allowing for gradual drug titration. After stress termination, dobutamine side effects can be reversed by administration of a beta-blocker. To increase the sensitivity of the test, it is recommended to stop beta-blocker treatment 24–48 h prior to the examination [20]. Contraindications to dobutamine stress CMR, side effects, and termination criteria are listed in Tables 1, 2 and 3, respectively. Due to the risk of severe side effects of stress testing, patients have to be closely monitored for their safety. Resuscitation equipment and trained personnel must be available.

Diagnostic criteria and image analysis

For standardized assessment and documentation of CMR the use of the 17-segment model of the American Heart Association is recommended [21]. It is generally accepted and enables comparability to other imaging modalities. The left ventricle will be divided into a
- basal,
- mid-cavity and
- apical short axis section.

With regard to the circumferential location, the basal and mid-cavity slices are further subdivided into six segments of 60° each, named
- anterior,
- anteroseptal,
- inferoseptal,
- inferior,
- inferolateral,
- anterolateral

and numbered anticlockwise from 1 (basal anterior) to 6 (basal anterolateral) respectively from 7 (mid anterior) to 12 (mid anterolateral). The apical slice is subdivided into four segments, named
- anterior,
- septal,
- inferior and
- lateral

and numbered anticlockwise from 13 (apical ante-
Recommendation of the American Heart Association for standardized myocardial segmentation and nomenclature in cardiac imaging. (Adapted from Cerqueira et al. [21])

(A–D): CMR images at rest (top) and at peak dobutamine stress (bottom) showing LV end-diastolic (l.), and end-systolic (r.) frames from a four-chamber view in a patient with normal contraction at rest and with inducible ischemia clearly visible as hypokinesia apical (red arrows). (E): Corresponding angiogram of the left coronary artery showing a high-grade LAD stenosis (blue arrow) in the same patient.
(I–J): Bulls eye plots of enddiastolic to end systolic thickening at rest (left) and at peak dobutamine stress (right) in the same patient.

(K–L): Dual source computed tomography (DSCT) coronary angiography (left) and conventionally coronary angiography (right) reveal a subtotal stenosis of the LAD (blue arrows).

(A–D): End-diastolic and end-systolic frames from an apical long-axis view of the left ventricle (three chamber view) and (E–H): midventricular shortaxis view at rest (left) and at peak dobutamine stress (right) in a patient with inducible ischemia. Red arrows mark the region from anteroseptal midventricular to the apex that shows an impaired contractile response with pronounced wall motion abnormality and reduced thickening.
rior) to 16 (apical lateral). The apical cap represents the muscle at the tip of the ventricle and is defined as segment 17, called the apex (Figure 2). During high-dose dobutamine stress CMR all 17 left ventricular segments should be analyzed. Therefore, the acquisition of not less than three short-axis slices (basal, mid-cavity, apical) and at least one additional long-axis plane (two-, four-, or three-chamber view) is recommended for evaluation of the apical region. At all stress levels an assessment of regional myocardial contractility is performed, including rest and post-stress phase. A normal wall motion response at dobutamine stress CMR is defined as development of hyperkinetic wall motion or preservation of the resting contraction pattern during dobutamine infusion. A pathologic response is characterized by transient wall motion abnormalities in at least one segment that was graded normal at rest (Figure 3). Segmental wall motion is graded hypokinetic, if endocardial inward movement and systolic wall thickening appeared decreased but not absent. A segment is graded akinetic if it shows lack of inward endocardial motion and absence of systolic wall thickening. A segment is graded dyskinetic if it demonstrated paradoxical systolic outward movement of the endocardial border or systolic wall thinning [2]. The location of segments with normal and pathologic wall motion are compared to the perfusion territory of the main epicardial coronary arteries which are defined by the AHA recommendations [21]. Wall motion abnormalities in anterior, anteroseptal, and septal segments are usually attributed to the left anterior descending artery (LAD), those in inferior and inferoseptal segments to the right coronary artery (RCA), and those in lateral segments to the circumflex artery (RCX). A coronary artery is considered as significantly stenosed if at least one of the segments located in its territory was abnormal at dobutamine stress CMR (Figure 4). If no segment was abnormal, the corresponding coronary artery is graded to have no relevant stenosis.

Discussion

High-dose dobutamine stress CMR is currently an established method for the assessment of stress inducible regional left ventricular wall motion abnormalities due to its high diagnostic accuracy, feasibility and versatility (Table 4).

Table 4: Dobutamine stress MRI for detection of significant CAD compared with conventional coronary angiography.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennell et al.</td>
<td>1992</td>
<td>91%</td>
<td>–</td>
<td>25</td>
</tr>
<tr>
<td>van Rugge et al.</td>
<td>1993</td>
<td>81%</td>
<td>100%</td>
<td>45</td>
</tr>
<tr>
<td>Baer et al.</td>
<td>1994</td>
<td>84%</td>
<td>–</td>
<td>35</td>
</tr>
<tr>
<td>van Rugge et al.</td>
<td>1994</td>
<td>91%</td>
<td>80%</td>
<td>39</td>
</tr>
<tr>
<td>Nagel et al.</td>
<td>1999</td>
<td>86%</td>
<td>86%</td>
<td>172</td>
</tr>
<tr>
<td>Hundley et al.</td>
<td>1999</td>
<td>83%</td>
<td>83%</td>
<td>41</td>
</tr>
<tr>
<td>Kuijpers et al.</td>
<td>2003</td>
<td>96%</td>
<td>95%</td>
<td>68</td>
</tr>
<tr>
<td>Paetsch et al.</td>
<td>2004</td>
<td>89%</td>
<td>80%</td>
<td>79</td>
</tr>
<tr>
<td>Wahl et al.</td>
<td>2004</td>
<td>89%</td>
<td>84%</td>
<td>160</td>
</tr>
<tr>
<td>Syed et al.</td>
<td>2005</td>
<td>89%</td>
<td>100%</td>
<td>19</td>
</tr>
</tbody>
</table>
Previous studies have demonstrated the clinical feasibility of CMR in conjunction with pharmacological stress testing for the detecting of relevant CAD [6, 10, 12, 14]. Pennell et al. [10] reported the first use of dobutamine stress in conjunction with CMR in 25 patients with chest pain by using an intermediate dose of dobutamine (up to 20 μg/kg/min). He found a 91% incidence of dobutamine–induced reversible wall motion abnormalities in patients with CAD.

Baer et al. [11] and van Rugge et al. [12] have shown that dobutamine MRI detects overall CAD with a sensitivity of 85% and 91%, respectively by using moderate doses of dobutamine up to 20 μg/kg/min. Nagel et al. provided the first report on the efficacy and safety of high-dose dobutamine (up to 40 μg/kg/min and additional use of atropine as needed) combined with CMR for the detection of CAD in a larger patient population. In this study dobutamine stress CMR proved to be superior to dobutamine stress echocardiography in terms of sensitivity (86% vs. 74%) and specificity (86% vs. 70%) in 172 patients. The superior results of CMR were attributed to its better overall image quality, which was graded good or very good in 82%, but only in 51% of echocardiography studies [6]. Hundley et al. performed high-dose dobutamine CMR for the detection of ischemia in 41 patients who were not well suited for second harmonic stress echocardiography because of poor acoustic windows and reported a sensitivity and specificity of 83% for the detection of a coronary stenosis > 50% luminal diameter [22].

Wahl et al. performed high-dose dobutamine-atropine stress CMR after coronary revascularization in 160 consecutive patients with pre-existing wall motion abnormalities at rest. CMR displayed good results, with sensitivity of 89% and specificity of 84% for detection of significant CAD [23].

Using TrueFISP or SSFP cine sequences Paetsch et al. found high-dose dobutamine stress CMR to be superior to adenosine stress perfusion CMR for detection of significant CAD, with sensitivities and specificities of 89% and 80% and 91% and 62%, respectively in 79 patients without history of prior infarction [26]. Syed et al. had shown a high interstudy reproducibility (p = 0.91) and a low interobserver variability (kappa = 0.81) of dobutamine stress MRI in 19 patients with severe coronary disease [27]. The overall sensitivity and specificity for the assessment of ischemia induced wall motion abnormalities for detecting CAD achieved with dobutamine stress CMR is in good agreement with stress echocardiography studies yielding sensitivities of 78% to 96% and specificities of 66% to 85% [28–32].

Conclusion

Dobutamine stress CMR using a state of the art fast imaging sequence is a reliable and clinically safe and robust method to evaluate the functional significance of coronary lesions by detecting ischemic induced wall motion abnormalities.

Contact
Markus Jochims, M.D.
Department of Cardiology and Angiology
Elisabeth Hospital
Klara-Kopp-Weg 1
45138 Essen
Germany
m.jochims@elisabeth-essen.de